Miller, T.E. and C.P. terHorst. 2012. Testing successional hypotheses of stability, heterogeneity, and diversity in pitcher-plant inquiline communities. Oecologia 170:243-251.
Abstract: Succession is a foundation concept in ecology that describes changes in species composition through time, yet many successional patterns have not been thoroughly investigated. We highlight three hypotheses about succession that are often not clearly stated or tested: (1) individual communities become more stable over time, (2) replicate communities become more similar over time, and (3) diversity peaks at mid-succession. Testing general patterns of succession requires estimates of variation in trajectories within and among replicate communities. We followed replicate aquatic communities found within leaves of purple pitcher plants (Sarracenia purpurea) to test these three hypotheses. We found that stability of individual communities initially decreased, but then increased in older communities. Predation was highest in younger leaves but then declined, while competition was likely strongest in older leaves, as resources declined through time. Higher levels of predation and competition corresponded with periods of higher stability. As predicted, heterogeneity among communities decreased with age, suggesting that communities became more similar over time. Changes in diversity depended on trophic level. The diversity of bacteria slightly declined over time, but the diversity of consumers of bacteria increased linearly and strongly throughout succession. We suggest that studies need to focus on the variety of environmental drivers of succession, which are likely to vary through time and across habitats.